K-theory of (Finite) Fields

Giacomo Bertizzolo

March 10, 2024

Abstract

The goal of this seminar is to study Quillen's computation of the algebraic K-theory of finite fields. This makes use of various topological and algebraic tools from homological algebra, simplicial homotopy theory, topological K theory, and group cohomology. These tools will be reviewed in as much detail as possible and depending on the audience's prior knowledge. To give a talk or for general information, you can write me an email at: giacomo.bertizzolo "at" mathematik.uni-regensburg.de . What we are going to study 1 K-theory of finite fields 1 K-theory of algebraically closed fields 3 Further Topic: Rational K-theory of number fields 4 Schedule 5 References 8

What we are going to study

K-theory of finite fields

Let R be a ring with identity. We define the general linear group of R to be the filtered colimit

$$
G L(R):=\operatorname{colim}_{n} G L_{n}(R) \in \operatorname{Grp},
$$

and $E(R)$ to be the subgroup of $G L(R)$ generated by elementary matrices (recall that an elementary matrix is a matrix which differs from the identity matrix by one single entry). The classifying space $B G L(R)$ is path-connected, and $E(R)$ is the largest perfect normal subgroup of $\pi_{1}(B G L(R))=G L(R)$, so there exists an acyclic map

$$
\eta: B G L(R) \rightarrow B G L(R)^{+}
$$

unique up to homotopy equivalence such that $\operatorname{ker} \pi_{1}(f)=E(R)$. The map η has the following universal property: for each space X such that the π_{1} of each connected component contains no non-trivial perfect groups, we have

$$
\eta^{*}:\left[B G L(R)^{+}, X\right] \xrightarrow{\simeq}[B G L(R), X] .
$$

For $i \geqslant 1$, the i-th K-group of R is defined as

$$
K_{i}(R)=\pi_{i}\left(B G L(R)^{+}\right)
$$

The first goal is to prove the following theorem:

Theorem 1 (Quillen, [Qui72b])

Let \mathbf{F}_{q} denote the field with $q=p^{d}$ elements for a prime p. Then

$$
\begin{aligned}
& K_{0}\left(\mathbf{F}_{q}\right)=\mathbf{Z} \\
& K_{2 n-1}\left(\mathbf{F}_{q}\right)=\mathbf{Z} /\left(q^{n}-1\right) \quad \forall n>1 \\
& K_{2 n}\left(\mathbf{F}_{q}\right)=0 \quad \forall n>0
\end{aligned}
$$

Theorem 1 can be proved in many different ways. The original one [Qui72b] is based the following:

Theorem 2 ([Qui72b])

There is a homotopy equivalence $\theta: B G L\left(\mathbf{F}_{q}\right)^{+} \rightarrow F \psi^{q}$, where $F \psi^{q}$ is the space of homotopy-theoretical fixed points of the Adams operation ψ^{q}.

Given Theorem 2, for $i>0$ we know

$$
K_{i}(R)=\pi_{i}\left(B G L R^{+}\right) \simeq \pi_{i}\left(F \psi_{q}\right)
$$

and we can compute the homotopy groups of $F \psi^{q}$ using Bott periodicity.
The primary references we are going to use to prove Theorem 1 is Quillen's original paper [Qui72b] and the expository notes [Mit].

Idea of proof.

Let k denote the finite field with $q=p^{d}$ elements, and let ℓ denote a prime different from p. The first task is to produce θ. Using the Brauer theory of modular characters, we can lift the standard representations of $G L_{n}(k)$ to a virtual complex representation; this corresponds to maps $B G L_{n}(k) \rightarrow B U$, where $B U$ is the classifying space of $U:=\operatorname{colim}_{n} U(n)$. The $\operatorname{map} B G L_{n}(k) \rightarrow B U$ is unique up to homotopy.
The Adams operation, denoted $\psi^{q}: K(\bullet) \rightarrow K(\bullet)$ for $q \in \mathbf{Z}_{\geqslant 1}$, is a cohomology operation in topological K-theory, characterized by three properties:

- $\psi^{q}([L])=\left[L^{\otimes q}\right] \in K(X)$ if $[L]$ the K-theory class of a line bundle over X for any X topological space.
- $\psi^{q}: K(X) \rightarrow K(X)$ is ring morphisms for any X topological space.
- ψ^{q} is a natural transformation of functors.

The virtual complex representation is fixed under the Adams operation ψ^{q}, and hence lifts to a map $B G L_{n}(k) \rightarrow F \psi^{q}$. As n varies, these maps will also fit together to give us the map $\theta: B G L(k) \rightarrow F \psi^{q}$. This produces by acyclicity the desired map $\theta: B G L(k)^{*} \rightarrow F \psi^{q}$.
$B G L\left(\mathbf{F}_{q}\right)^{+}$and $F \psi^{q}$ are homotopy associative and commutative H-spaces, and so, in particular, simple spaces; therefore, by Whitehead's theorem, we reduce to proving that θ induces an isomorphism on integral homology. By standard homological algebra, it is then enough to show that θ induces an isomorphism on homology with coefficients in \mathbf{Q}, \mathbf{Z} / p, and \mathbf{Z} / ℓ (recall that $\ell \neq p$). We have the following claims:
(a) $\tilde{H}_{*}\left(F \psi^{q} ; \mathbf{Q}\right)=0=\tilde{H}_{*}\left(F \psi^{q} ; \mathbf{Z} / p\right)$.
(b) $\tilde{H}_{*}\left(B G L\left(\mathbf{F}_{q}\right)^{+} ; \mathbf{Q}\right)=0=\tilde{H}_{*}\left(B G L\left(\mathbf{F}_{q}\right)^{+} ; \mathbf{Z} / p\right)$.
(c) θ induces an isomorphism on homology with coefficients in \mathbf{Z} / ℓ.

Claim (a) follows from Serre's "mod \mathcal{C} " theory. The first equality of claim (b) can be proved using "transfer" in group cohomology; the second equality requires more work and involves both techniques from group cohomology and the use of the Hochschild-Serre spectral sequence. The hardest part lies in claim (c) and requires the explicit computation of the cohomology groups mod ℓ for both spaces.

K-theory of algebraically closed fields

Let k be an algebraically closed field. Lichtenbaum conjectured (see [Ger73], see [Qui74]) and Suslin proved (see [Sus83], [Sus84]) that $K_{i}(k)$ is divisible, its torsion being zero when i is even, and equal to $W(n)$ when $i=2 n-1$, where W_{n} is the nth Tate twist of the group W of roots of unity in k^{*}. As noted by Suslin (see [Sus83]) this conjecture can be reduced to a conjecture concerning the structure of the cohomology ring $H^{*}(G L(k), \mathbf{Z} / \ell)$ with ℓ prime different from $\operatorname{char}(k)$ and also to the conjecture concerning the structure of the K-theory ring $K_{*}(k, \mathbf{Z} / \ell)$.

- The (Lichtenbaum's) conjecture is true if k is the algebraic closure of a finite field by the work of Quillen [Qui72b].

Theorem 3 (Quillen, [Qui72b])

Let \mathbf{F} denote an algebraic closure of \mathbf{F}_{p}. Then for $i \geqslant 1$

$$
K_{i}(\mathbf{F})= \begin{cases}0 & \text { if } i \text { is even } \\ \bigoplus_{l \neq p} \mathbf{Q}_{\ell} / \mathbf{Z}_{\ell} & \text { if } i \text { is odd }\end{cases}
$$

where \mathbf{Q}_{ℓ} and \mathbf{Z}_{ℓ} are the ℓ-adic completion of \mathbf{Q} and \mathbf{Z}, respectively. The automorphism of $K_{2 i-1}(\mathbf{F})$ induced by the Frobenius map $x \mapsto x^{p}$ is the
multiplication by p^{i}. If \mathbf{E} is a subfield of \mathbf{F}, then

$$
K_{*}(\mathbf{E}) \xrightarrow{\simeq} K_{*}(\mathbf{F})^{\operatorname{Gal}(F / E)} .
$$

- In [Sus83] is shown that if k^{\prime} / k is an extension of algebraically closed fields, then

$$
K_{*}(k, \mathbf{Z} / n) \rightarrow K_{*}\left(k^{\prime}, \mathbf{Z} / n\right)
$$

are isomorphisms.
In [Sus84], it is shown that the case of one field of characteristic zero implies the conjecture for all fields of characteristic 0 . The computation of the K-theory for \mathbf{C} concludes the proof.

Theorem 4 (Suslin, [Sus84])

Modulo uniquely divisible groups, we have

$$
K_{i}(\mathbf{C}) \otimes \mathbf{Q}= \begin{cases}0 & \text { if } i \text { is even } \\ \mathbf{Q} / \mathbf{Z} & \text { if } i \text { is odd }\end{cases}
$$

More precisely, modulo uniquely divisible groups, the K-theory of the fields \mathbf{R} and \mathbf{C} are as displayed by the following table

$i \bmod 8$	0	1	2	3	4	5	6	7
$K_{i}(\mathbf{R})$	0	$\mathbf{Z} / 2$	$\mathbf{Z} / 2$	\mathbf{Q} / \mathbf{Z}	0	0	0	\mathbf{Q} / \mathbf{Z}
\downarrow	0	incl.	0	mult. by 2	0	0	0	iso
$K_{i}(\mathbf{C})$	0	\mathbf{Q} / \mathbf{Z}						

In [Sus84] there is also a proof of Lichtenbaum's conjecture for the positive characteristic case that does not use the computations of Quillen.

Further Topic: Rational K-theory of number fields

To conclude our seminar, we will look at results on number fields.

Theorem 5 (Quillen, [Qui72a])

Let $\mathcal{O}_{\mathbf{F}}$ be the ring of integers of a number field \mathbf{F}. Then, the groups $K_{i}\left(\mathcal{O}_{\mathbf{F}}\right)$ are finitely generated.

Theorem 6 (Borel, [Bor74])

Let $\mathcal{O}_{\mathbf{F}}$ be the ring of integers of a number field \mathbf{F}. Let r and s be the numbers of real
and complex embeddings of F, respectively. Then,

$$
K_{i}\left(\mathcal{O}_{\mathbf{F}}\right) \otimes \mathbf{Q}= \begin{cases}\mathbf{Q} & \text { if } i=0, \\ 0 & \text { if } i=1 \text { or } i>0 \text { even, } \\ \mathbf{Q}^{r+s} & \text { if } i \equiv 1 \bmod 4 \text { and } i>1, \\ \mathbf{Q}^{r+s} & \text { if } i \equiv 3 \bmod 4\end{cases}
$$

Moreover,

$$
\begin{aligned}
& K_{0}(\mathbf{F})=\mathbf{Z}, \\
& K_{1}(\mathbf{F})=\mathbf{F}^{\times}, \\
& K_{i}(\mathbf{F}) \otimes_{\mathbf{Z}} \mathbf{Q}=K_{i}(\mathcal{O}) \otimes_{\mathbf{Z}} \mathbf{Q} \quad \forall i \geqslant 2 .
\end{aligned}
$$

Notice however that the groups $K_{i}(\mathbf{F})$ are not necessarily finitely generated: while $K_{i}(\mathbf{F}) \otimes_{\mathbf{Z}} \mathbf{Q}=K_{i}(\mathcal{O}) \otimes_{\mathbf{Z}} \mathbf{Q}$ there may be infinite torsion in $K_{n}(\mathbf{F})$. Clearly,

$$
K_{1}(\mathbf{Q})=\mathbf{Q}^{\times}
$$

is not finitely generated, but also

$$
K_{2}(\mathbf{Q})=\mathbf{Z} / 2 \oplus \bigoplus_{p \text { prime } \geqslant 3}(\mathbf{Z} / p)^{\times}
$$

is not. (For Tate's proof of the computation of $K_{2}(\mathbf{Q})$ see [Mil72]).

Schedule

Due to holidays and other constraints, we will lose three meetings in May. Therefore, we are considering arranging one recap session during the week of May 6th-10th and another during the week of May 27th-31st. These sessions will provide an opportunity to review material and discuss topics such as the Bott periodicity Theorem and the Atiyah-Segal completion Theorem.
Additionally, we plan to have an extra talk at the end of the semester or immediately after, focusing on the rational K-theory of number fields.

Speakers of talks 7 and 8 should work closely together.
Talk 1 - Quillen's plus-construction
(Your name can be here! - 18.04.2024)

- Define the algebraic K-theory space of a ring R through Quillen's +-construction.(References can be and [Wei13, §4] and [Rap24, §2]).
- Prove that $B G L(R)^{+}$is a commutative H-group. (A reference can be [Sri96, Prop. 2.9].)
- Construct tensor product $K_{i}(R) \otimes K_{j}(R) \rightarrow K_{i+j}(R)$ (A reference can be [Sri96, Page 29].)

Talk 2-Complex K-theory \& Bott Periodicity
(Your name can be here! - 25.04.2024)

- Mini review of complex vector bundles and the classifying spaces for $U(n), U$, $G L_{n}(k), G L(k)$. (Reference can be [Kar78, §1], [May99, §23], and [Wei13, §1].)
- Introduce the (topological) complex K-theory of a CW-complex. (References can be [May99, §24] and [Wei13, §2].)
- Construct the K-theory Ω spectrum $K U$, and show that K is a generalizd cohomology theory. (References can be [May99, §24] and [Wei13, §2].)

Talk 3 - Adams Operations \& The space $F \psi^{q}$
(Your name can be here! - 02.05.2024)

- Give a characterization of Adams operations in K-theory (References can be [May99, §24.5] and [Wei13, §2]).
- Introduce the space $F \psi^{q}$. (References can be [Mit, §1] and [Qui72b, §1].)
- Prove $F \psi^{q}$ is a simple space and computes its homotopy groups. (A reference can be [Mit, §1] .)
- Compute its rational and mod-p reduced homology as in [Mit, §1]
- Start the computation of the cohomology $\bmod \ell, H^{*}\left(F \psi^{q}\right)$ as in [Qui72b, §2].

Talk 4-The classes $e_{j r}$
(Your name can be here! - 23.05.2024)

- Explicitly construct the classes $e_{j r} \in H^{2 j r-1}$ as in [Qui72b, §3].
- Recall μ and ν from [Qui72b, §1] and prove the product formula [Qui72b, Lemma 7].

Talk $5-H^{*}\left(F \psi^{q}\right)$ and $H_{*}\left(F \psi^{q}\right)$
(Your name can be here! - 06.06.2024)

- Study the algebras $H^{*}\left(F \psi^{q}\right)$ and $H_{*}\left(F \psi^{q}\right)$ from [Qui72b, §5, §6]

Talk 6 - Brauer Lifts

(Your name can be here! - 13.06.2024)

- Explain the Brauer lifts using [Mit, §2] and [Qui72b, §7].

Talk 7 - Homology of $G L_{n} k$ part 1
(Your name can be here! - 20.06.2024)

- Prove that the rational and mod p homology of $B G L(k)$ vanish following [Mit, §3].
- Start discussing the $\bmod \ell$ homology of $B G L(k)$ following [Qui72b, §8]

Talk 8 - Homology of $G L_{n} k$ part 2
(Your name can be here! - 27.06.2024)

- Finish the discussion the $\bmod \ell$ homology of $B G L(k)$ following [Qui72b, §8]

Talk 9 - K-theory of finite fields
(Your name can be here! - 04.07.2024)

- Complete the proof of Theorem 2 following [Qui72b, $\S 9, \S 12]$.

Talk 10 - K-th of Algebraically closed fields
(Your name can be here! - 11.07.2024)

- Compute the K-theory of the closure k of \mathbf{F}_{p} following [Qui72b, §12].
- Show that this coincide with the K-theory of any algebraically closed fields k^{\prime} over k following [Sus83].

Talk 11 - K-theory of Local fields
(Your name can be here! - 18.07.2024)

- Compute the K-theory of the closure of \mathbf{C} and \mathbf{R} following [Sus84].
- Discuss [Sus84] in some extent.

Extra Talk - Rational K-theory of Number Fields

(Niklas - Last week of semester, or the week after)

- Give a sketch of proof of Theorem 6. (A reference for this is [Bor74]. [Bes14] can be helpful too.)

References

[Bes14] A. Beshenov. Galois Cohomology and Algebraic K-theory of Finite Fields. 2014. URL: https://algant.eu/documents/theses/beshenov.pdf.
[Bor74] A. Borel. Stable real cohomology of arithmetic groups. 1974.
[Ger73] S. M. Gersten. Problems about higher K-functors. 1973.
[Kar78] M. Karoubi. K-theory: an introduction. 1978.
[May99] J.P. May. A Concise Course in Algebraic Topology. 1999.
[Mil72] J. Milnor. Introduction to Algebraic K-Theory. 1972.
[Mit] S. Mitchell. Notes on the K-theory of Finite Fields.
[Qui72a] D. Quillen. Finite generation of the groups Ki of rings of algebraic integers. 1972.
[Qui72b] D. Quillen. On the cohomology and K-theory of the general linear group over a finite field. 1972.
[Qui74] D. Quillen. Higher algebraic K-theory. 1974.
[Rap24] G. Raptis. Acyclic Maps and Plus-Construction. 2024. URL: https://elearning. uni-regensburg.de/course/view.php?id=64406.
[Sri96] V. Srinivas. Algebraic K-theory. 1996.
[Sus83] A.A. Suslin. On the K-Theory of Algebraically Closed Fields. 1983.
[Sus84] A.A. Suslin. On the K-theory of of Local Fields. 1984.
[Wei13] C. Weibel. The K-book: an introduction to algebraic K-theory. 2013. URL: https://sites.math.rutgers.edu/~weibel/Kbook.html.

